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Abstract. We study the critical behaviour near the threshold where a first bound state appears
at some value of coupling constant in an attractive short-range potentiai-ia @imensions.

We obtain a general expression for the binding energy near the threshold and also demonstrate
that the critical region is correctly described by an effective separable potential. The critical
exponent of the radius of weakly the bound state is shown to coincide with the correlation
length exponent for the spin model in the laryelimit. In two dimensions, where the binding
energy is exponentially small in coupling constant, we obtain a general analytic expression for
the prefactor.

1. Introduction

It is well known, that in three dimensions a bound state for a particle in a short-range
potential exists not at an arbitrary value of the coupling constariiut only atA > A,
wherel. is a critical value which depends on the particular potential. This may be viewed
as the simplest example of a quantum phase transition, when e.g. an excitation gap vanishes
as some parameter of the Hamiltonian is varied (see e.g. [1] for a review). In a sense, such
a behaviour is similar to the second-order phase transition. Near the threshold the energy of
the bound state behaves like an ‘order paramdier (A — Ac)?, wherea plays the role of
temperature an@ is the critical exponent. Deeper investigation of this critical behaviour

is interesting in itself and may have some applications (see [2] and references therein).

The lower critical dimensionality for this transition és= 2, since in two dimensions
there always exists a bound state with energy exponentially smal[3f hencei. = 0 in
this case. For this reason it seems natural to study the critical behaviowdmiZnensions,
consideringe to be a small parameter, as was done for the phase transition in the nonlinear
O(N) sigma model [4] and also in the theory of Anderson localization (see e.g. [5]). It
appears possible to develop arexpansion both for the wavefunction at the critical point
and for the critical coupling.c(¢) [6, 7]. Even the first two terms of the expansiongfe)
in powers ofe give a rather accurate estimate fqrin three dimensions.

In this note we consider the onset of the first bound state-ne2dimensions in more
detail. First, we demonstrate thét= 2/¢ for ¢ < 2 andg = 1 above four dimensions. The
result at smalk is not unexpected, singg must go to infinity asx — 0 to reproduce the
exponential dependence Bfon 1 in two dimensions. These expressionsfaare consistent
with the results of Lassawtt al [2]. Although they have studied the three-dimensional
case with non-zero orbital momentumthis is equivalent to the s-state problem ir-2
dimensions withe = 1 4 2/ (see below).
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However, the method used here is different from that of [2]. Starting from the integral
representation of the Satatinger equation we first derive exact results for the binding energy
at L ~ A.. Then we show also that the correct description of the critical region is given
by the separableapproximation, with the true interaction potential replaced by an effective
nonlocal separable one, which depends on the zero-energy solution of th&diBger
equation at. = Ac.

When L — A; the radius of the bound state diverges(as— A¢)~" with the critical
exponentv = %/3. Therefore the result obtained may be represented in termsrdmely
v=1/ate < 2 andv = % at e > 2. This exponent coincides with the correlation-
length exponent in the spherical model (equivalent to Meomponent spin model at
N — o0)[8] and with the localization-length exponent in the self-consistent theory of
Anderson localization [9]. It is not clear whether this coincidence implies some nontrivial
relation between these models, but still it seems rather interesting.

The same critical exponents were obtained from scaling considerations by Hwa and
Nattermann [10] and Kolomeisky and Straley [11], who considered the problem of unbinding
a directed polymer from a columnar defect in the presence of quenched disorder. Since
such a polymer may be viewed as a worldline of a quantum particle, in the clean case this
problem is essentially the same as the one discussed here.

Next, the approach used here also makes it possible to obtain an asymptotic expression
for the energy of the bound state in two dimensions at 0 along with the pre-exponential
factor. This general analytic expression for the prefactor seems, to the best of our knowledge,
to be a new one. We also calculate this prefactor for some simple potentials and discuss its
connection with the-expansion fori.

As a direct application of the general result for the binding energy in two dimensions we
also consider a case of a two-centre potential. The attractive force between the centres due
to the bound state is shown to be of the Coulomb type (cf [12]) and the universal prefactor
is found without solving the Scbidinger equation.

2. Critical behaviour in 2 + € dimensions

Consider the Sclidinger equation i/ dimensions
— AV(r) + AV (r)¥(r) = EV(r) Q)

( = 1, 2n = 1), where is the coupling constant and(r) is a short-range attractive

potential. We assume (r) to decrease faster theri/£ asr — oo and shall deal here with

the weakly bound state of the size(—E)~Y2 > a, wherea is the radius of the potential.
The first bound state in the problem appears at some critical value of the coupling

constant. = A.. Let us denote by)y the wavefunction of this state at the threshold. Then

Yo obeys the following zero energy equation

— Ao+ AV (r)Yo = 0. (2)
It is convenient to normalizé by the condition
/ dr y2(r)V(r) = -1 3)

Note, thatyo(r) need not be square integrable and the convergence of the normalization
integral in (3) is guaranteed by the short-range poteritial).
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We shall now determine both the critical valiig and the binding energy at ~ Ac.
For this purpose first rewrite the original Sodinger equation in the integral form

W(r) =—A / dr' Gg(r — V(¥ () (4)

where Gg(r) is the Green function of the free particle. This integral equation may also
be viewed as an equation determinib@®) for the given negative energy of the bound
state. Multiplying both sides of (4) by (=)W (r) and integrating over we easily obtain

1 _fdr dr’ Vi)Y (r)Ge(r —r)VE )W (r)

- = 5
A [ drw2(r)V(r) ©)
If we put hereE = 0 thenW — 4/ and using the normalizing condition (3), we have
1
= f dr dr’ W(r)Go(r — YW () (6)
Cc
where
W(r) = V(r)yo(r). )
At zero energyGo(r) is merely the Green function of the Laplace operator and
11
Go(r) = —— ©)
€0 T
(see e.g. [13]), where
27T1+e/2
)

T T +e¢/2)
is the area of the unit sphere irH2¢ dimensions. Then the critical value of the coupling
constant may be represented as follows

1+e/2 n1-1
Aczezﬂ_[/drdﬂm} ‘ (10)
IF'(l+¢/2) |r —7/|¢

This expresion explicitly demonstrates that normallyends to zero as when we approach

two dimensions.
Now, in the vicinity of the critical point we may write

=y +8W Gr = Go+8Gp (11)

and assume all corrections to zero energy values to be small. If we substitute (11) in (5)
and retain only terms of first order W we finally obtain

% = % + / drdr’ W(r)S8Ge(r — YW (') (12)

with 1/ given by (6). Note that the terms containifigg cancel out. This cancellation is
a consequence of the zero-energy equation

Yor) = —he f dr' Go(r — ')V (' )yro(r) (13)

and is actually due to the right-hand side of (5) being a variational functional which is stable
against small variations of the true wavefunction [14]. In the lifit> 0 we can expand
8Gg(r —7') in equation (12) in powers of. In 2+ ¢ dimensions withe < 2 we have at
small negativeE
rd—e¢/2 E
56, ~ LA=¢€/2) (

€/2
= 2—¢
e 471) + O(Er<™) (14)
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(see appendix A). Substituting this expression in (12), we finally obtain

_ 2/e
E=_<A’\ A“) O<e<?2 (15)
where
A=2€F(1+6/2)fdrdr WE)WE)|r —r'|” (16)
r(l—e/2) (f dr W(r))?
At € > 2, the leading term in the expansion (14) f& ¢ (r) is ~ E and
E~ (=2 €>2. (17)

These equations formally solve the problem of the critical behaviour near the transition
where the first bound state appears/ia= 2+ ¢ dimensions. In three dimensions equation
(15) leads toE ~ (1 — A¢)? and for the square-well potential one can easily verify (using
Yo from equation (49) of appendix B) that equations (10) and (16) give the correct answer
re = m?/4a? and A = 72/8a. Note, that if the Sclirdinger equation is solved in the critical
point, i.e. A¢ and g are known, one can also evaluate the prefadtor

The results obtained should be compared with that of [2], where the |-wave case was
considered, because the radial s-wave 8dimger equation ini = 2 + ¢ dimensions is
equivalent to the three-dimensional equation with nonzero orbital momente — 1)/2
(see appendix A). Hence e.g. the dependence(15) is the samfe,~as(x — Ac)%/@+D
obtained in [2] forl < 3.

The particular form of equation (12) suggests that the correct description of the critical
region near the threshold~ A. can be obtained within the separable approximation. This
approximation, widely used in nuclear physics, involves replacing the original potential
V (r) with a nonlocal separable one, for which the Satinger equation is exactly solvable.

In our case one should take

Vsep= _V|1/f0><1/f0|v (18)

where g is the zero energy solution normalized by the condition (3). If the ground-state
wavefunction ~ vy then Vsepis in a sense close t@, since(V — Vsep o = 0.
The Schédinger equation for a particle in the potential (18) reads

— AV (r) = AV (r)Yo(r) / dr’ V(@ )Yo(r)W(r') = EW(r) (19)

and has an obvious solution for the bound state, which up to a normalizing constant is given
by

W(r) = —AX / dr' Gg(r — rYW (). (20)

The energy of the bound state is determined by substitution of (20) into equation (19), i.e.
from the equation

1=A / drdr’ W) Ge(r — )W (). (21)

This is just the same equation as (12), sitte= Go+ 8Gg and 1/ is determined from

(6). Therefore the separable approximation (18) results in exact expressions (15), (17) in
the close vicinity of the critical point. The validity of the separable approximation seems
to be due to the wavefunction (20) having correct asymptotic behavioursata. This

is similar to the one-dimensional case, where the energy of the weakly bound state can be
obtained by replacing the trug(x) with a suitables-function potential, which also may
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be viewed as a separable one. In appendix B we show how one can naturally arrive at the
separable potential of the form (18).
As . — A the radius of the bound state~ (—E)~Y/? goes to infinity asx — A¢)~",
where we have introduced a new critical exponentThen from (15) and (17) it follows
that

1
—_— 2<d<4
v={d-2 (22)

1
: d> 4

Critical exponenb diverges ag — 2 and ‘freezes’ abové = 4 at the mean-field value
1

v = 5. This is precisely the correlation-length exponent for M&omponent spin model
at N — oo [8]. Another model where equation (22) arises, is the self-consistent theory
of Anderson localization for a particle in a random potential. In this case the localization
length diverges asEr — E.)~ 7 if the Fermi energyEr approaches the mobility edgé,
andv is also given by equation (22) [9]. It was even argued that this result fervalid
beyond the self-consistent approximation and might be an exact one [15, 16].

This interesting coincidence arises from the fact that in all these models resulting
equation, determining the behaviour of the correlation lerigtihas the form similar to
(21) with E — £~2. For example, in the self-consistent theory of Anderson localization the

localization lengthe is given by the equation

q0 1+e

1= BEZ>* f Yq (23)
o 9°+§

where B is some constant angh is a momentum cut-off [9]. Comparing (23) with (21) we

see that this is indeed the equation for the binding enérgyin an effective short-range

separable potential with ~ 1/E§+E, a ~ 1/qo. If the Fermi energy increases,tends to

zero and ak = A, the bound state disappears. This critical point obviously corresponds to

the Anderson transition. Perhaps this is not a mere coincidence and some direct mapping

between these models might be established.

To conclude this section we should like to mention that at sem#ie critical exponents
derived here can be obtained without actually solving the @tthger equation. This was
done e.g. by Hwa and Nattermann [10] and Kolomeisky and Straley [11], who considered
the problem of unbinding a directed polymer (i.e. the worldline of a quantum patrticle) from
a columnar defect. In this case simple scaling arguments immediately lead to equation (22).
In fact, one can take any quantity (not necessarily the free energy as in [10, 11]) depending
on some scale and look at the perturbation theory.irConsider e.g. the Born series for
the s-wave scattering amplitudgk) (see e.g. [17])

Jk) = filk) + falk) + - - (24)

where at smalk

-~ * . V@R
fi~AV(0) fa~ )»2/0 dg ¢** K= g2 +10 (25)

and V (¢q) is the Fourier transform of the potential. For the perturbation theory to be valid
it is necessary thaf,/f1 < 1. At smalle one has from (25), ~ A2V2(0)(1— (k/ ko)) /e,
wherekg ~ 1/a, and hence the particle is essentially free on a skafe

fr A k¢
() < 20
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(cf [10]), wherex. ~ €V (0). If A > A¢ then (26) is not fulfilled ak = 0 and the particle
is bound. However, for

P
k>>§-‘1~ko< ) (27)

A

one can neglect the potential. Hericérom (27) may be viewed as the radius of the bound
state. The critical exponent obtained in this way is the same as (22).

3. Weakly bound states in two dimensions

In three dimensions neither, nor A are known exactly for an arbitrary potential, since

we can solve the zero-energy problem only in some special cases. However, the situation
is different in two dimensions. In this case arbitrarily weak short-range attractive potential
binds a particle, so that, = 0. Then the solution to zero-energy equation (2) is
obviously o(r) = constant, which, according to the normalization condition (3), results in
Yo=|/drV(r)Y?and

V(r)
| [drV(r)|2
Next, in the limite — 0 we havei. ~ € and A — 1. Therefore in this limit the

right-hand side of equation (15) for the binding energy turns to an exponential function.
Then fork = «/—E we have

W(r) = (28)

2
=Cexpl ———F—7-— 29
‘ p( x|fdrV(r)|> @9
where the prefacto€ is determined from the expansion afin powers ofe
A~1+€elnC+---. (30)

ExpandingA from (16) ine we obtain
Jdrdr’ V(r)V()in|r — 7"/|>
(fdrV(r)?

wherey = 0.577...is Euler’s constant. Thus, in two dimensions we have a general explicit
expression for the energy of the weakly bound state. In contrast to the one-dimensional
case, where att — 0 we may approximate any short-range potential by &Hanction
and the binding energy depends only on one potential-dependent infedral (x), here
there are two different integrals, one of which being nonlocal. In three dimensions no such
general closed form for the energy is available even near the thresheld.

The double integral in (29) resembles the one encountered earlier ireékpansion
for Ac(¢). For the spherically symmetric potential at smalbne has [6]

o =exp<ln2—y — (31)

Ae(€) = hie + Ape? 4 - - (32)
where
1
= 33
! fooo drrV(r) (33)

1 fooo drr fooo dr’' Vi)V in :—Z
) [fooo drrV()]3

2= (34)
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Table 1. Values fori; andi; from (32),a from (36) and the prefactaf from (31) for several
different potentialsV (r).

—V(r) ra?  roa? aja Ca
exp(—r/a) 1 In2— % ~v e 34
0a—r) 2 % ez pgvtl/4
(a/r)exp(-r/a) 1 In2 e’ 1
exp(—r2/a?) 2 In2 er/2  J2ev/?

(r~ (r.) is the greater (lesser) of r’). Then, after some straightforward calculations, we
obtain another expression far

1 A
C=:exp(ln2—y——2> (35)
a )\1
wherea is the mean range of the potential, defined by

Jo drrv(r)

We evaluater;, A2, a and C for several widely used potentials and the results are
displayed in table 1. Note that the values of the prefact@re surprisingly simple.

As mentioned earlier [6], equation (32) may be extrapolated t01 to give a rather
good estimate for the critical coupling in three dimensions. For the Yukawa potential
this results e.g. ime? ~ 14 In2 ~ 1.693..., which is close to the exact result
rea® = 1.6798.. ..

It is also possible to use-expansion in the same manner to evaluate the prefatctor
in three dimensions. From (30) it follows that/c ~ C at smalle. Extrapolating this
result toe = 1 we see that actuall may be treated as a first approximation férin
three dimensions. For the square-well potential this approximation gives 2e77 /4 ~
1.442. .. the exact value being equal fa: = 72/8 = 1.234. ... While qualitatively correct,
this first approximation is not very accurate.

Equation (29) is valid for spherically honsymmetric potentials as well, provided the
range of the wavefunctior—! is much larger, than the radius of a potential. Hence
equation (29) may be used in the problem of several attractive centres.

In the case of two identical centres separated by a dist&nae may write

V(r)=v(r)+v(r+ R) (37)

and upon substituting this potential in (31) we obtain tat exp(—% InR) at R > a for
arbitrary short-range(r). Then for the energ¥, of a weakly bound state at<« R <« «~*
equations (29) and (31) yield

(36)

— _paerko
E, =—-2¢ R (38)

wherekg is the square root of the binding energy on one centre (given by (29) and (31)
with the replacemenV () — v(r)). This is obviously the energy of the symmetric state.
Note, that the energ¥, depends on the details of the interaction only through

It is interesting that the effective long-range force between two centres, resulting from
the bound state is of the Coulomb type. In three dimensions the corresponding energy is
known to behave as/R? [18]. This is related to the collapse of three particle system with
zero-range interaction, known as Thomas effect [19]. Less singular behaviour of the energy
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(38) at smallR is related to the absence of the Thomas effect in two dimensions [20]. For
separable potential of a particular type the dependegtR in two dimensions was derived
in [12]. We see now that this formula is quite universal.
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Appendix A

For the spherically symmetric potential the radial part of the{Rdimensional Sclidinger
equation reads

1d e+1 d _
<_md_rr a"')‘v('")) V(r) = EY¥(r). (39)
The substitutionV = ¢r~1+/2 puts equation (39) in the form
? (@ -1

This is obviously the radial equation for the wavefunction with nonzero angular momentum
1 in three dimensions with(l + 1) = (¢2 — 1)/4, i.e.l = (¢ — 1)/2.

Next we proceed to the evaluation of the free-particle Green funoigiy), in 2+ ¢
dimensions. This function certainly can be found elsewhere in the literature but, for the
sake of completeness we give here its short derivation. The Green function satisfies the
equation

(—A — E)GEg(r) =4(r). (41)
At r # 0 we have forf = r</?Gg(r)
d? 1d €2
(ﬁ'f‘;d—r—m‘FE)f:O- (42)

Then, atE < 0, f(r) (which goes to zero as— o0) is proportional to the modified Bessel
function K »(«r), wherexk = «/—E, hence

Ge(r) ~ r K a(kr). (43)
At E = 0 the Green function reduces to the fundamental solution of the Laplace equation,
which in 2+ ¢ dimensions is given by equation (8). At — 0 ande < 2 we have
s I—e/Z(Kr) - E/Z(Kr)
K. = = -

20N = T iR /2)
_ w (kr/2)7</2  (kr/2)</?
T 2sinen/2) |[T(1—€/2) T (1+€¢/2)
Using this asymptotics, identity (z)I'(1 — z) = n/sin(rz) and comparing (43) with (8)
we can fix unknown constant in (43)
1 K\€/2

Ge() = s (%) Kepalur). (45)
Smallx behaviour of (45) gives rise to the expansion (14)&6t; = G — Gg in the main
text.

+ 0((“)26/2)} . (44)
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Appendix B

To derive the separable potential (18) one can start from the following separable
decomposition of a local potentid(r)

Vr) =0V Iy (Yl V (46)

where the set of functiong),) is determined from the eigenvalue equation
(A + E) 'V, = nu(E)Y (47)

and o, = +1 depending on the sign ofy,|V|vy,) (see e.g. [21]). For negativ&
this equation is in fact the Sdbdinger equation for the bound states, whetgis the
wavefunction of a bound state with energyin the potential 1n,(E)V (r), i.e.
(_A + 1/77nV(7°))1/fn = Ewn (48)

From this equation one can derive a normalizing condition, which in this case is known to
be (Yl V ()| Ym) = 0nSnm [21]

Since we are interested in the weakly bound state ittr 0, we may now take the
limit E — 0 in equation (48), i.e. we may define the getwith respect to the zero energy.
In this casey,’s are the threshold wavefunctions and the corresponding values;pfQ)
are critical values of coupling constant. The wavefunctignof the first ground state at
E — 0 obeys the zero-energy equation (2), whege= 1/n0(0) and nq is the largest
eigenvalue in (47). We do not knoy,’'s exactly for an arbitrary potential, but e.g. for the
attractive square well of radiusin three dimensions one can easily obtain for the s-states

1 .
—Siny/A,r r<a
r

Y ~ .
(—1)”; r>a (49)

1 21

In the critical regioni ~ A the wavefunction of the first bound state is very close to
Yo, SO it seems natural to retain only the term with in the expansion (46) as a zero
approximation. This approach is similar to the pole approximation in the scattering theory,
valid for the resonance scattering when there exist a weakly bound state.

Assume next thatyo|V |¥o) < 0 so thatog = —1. Then, in the vicinity of the critical
point, where the transition from zero to one bound state occurs, we arrive at the separable
potential (18)

V = Vsep= —V[¥o) (Yol V (50)
where is normalized by the condition (3).

References

[1] Sondhi S L, Girvin S M, Carind P and Shahar D 199Rev. Mod. Phys69 315-33

[2] Lassaut M, Bulboaca | and LomaR J 1996J. Phys. A: Math. Ger29 2175

[3] Landau L D and Lifshiz E M 1977 Quantum Mechanic€Oxford: Pergamon) ch 6

[4] Polyakor A M 1975 Phys. Lett59B 79

[5] Lee P A and Ramakrishnal V 1985Rev. Mod. Phys57 287-337

[6] Apenko S M 1983Pis’'ma Zh. Eksp. Teor. Fi38 132 (Engl. translSov. Phys.—JETP Let88 157)
[7] Belov A A and Lozovik Yu E 1990Teor. Mat. Fiz.82 90



1562 S M Apenko

(8]

El
[20]
[11]
[12]
(13]
[14]
[15]
[16]
(17]
(18]
(19]
(20]
[21]

Ma S 1976Critical PhenomengNew York: Benjamin)

Vollhardt D and Wblfle P 1982Phys. Rev. Let48 699

Hwa T and Nattermann T 1998hys. RevB 51 455

Kolomeisky E B and Stralg J P 1995Phys. RevB 51 8030

Lim T K and Shimer B 198@&. Phys.A 297 185

Vladimirov V S 1971Equations of Mathematical Physi¢soscow: Nauka)

Zubarer A L 1976 Sov. J. Part. Nucl7 553-83

Kunz H and Souillard B 1983. Physique Lett44 L503

Suslos | M 1995 Zh. Eksp. Teor. Fiz108 1686

Taylor J R 1972Scattering TheorgLondon: Wiley) ch 9

Fonseca A C, RedisE F and ShanieP E 1979Nucl. Phys A 320273

Thomas L 193%Phys. Rev47 903

Adhikari S K, Delfino A, Frederico T, Goldnmal D and Tomio L 1988Phys. RevA 37 3666
Brown G E and JacksoA D 1976 The Nucleon—Nucleon Interactiqdmsterdam: North-Holland)



